

On three 20-qubit IBM devices, our optimizations reduce

characterization time to under 15 minutes.

Third, our evaluation offers insights about crosstalk noise:

crosstalk can degrade the error rate of a two-qubit operation

up to 11x. The degradation is not static; the effect of crosstalk

on a particular gate varies up to 3x over many days. On all the

three devices in our study, crosstalk noise primarily affects

only nearest-neighbor gates.

Fourth, we develop an instruction scheduler that miti-

gates the application impact of crosstalk. We model the

gate scheduling problem as a Satisfiability Modulo Theory

(SMT) optimization and find optimal schedules. We imple-

ment our scheduler in IBM Qiskit Terra [21], an open-source

QC compiler. Using real-system runs on three IBMQ sys-

tems, we show that crosstalk mitigation improves the error

rate of SWAP circuits by up to 5.6x, geomean 2x over the

parallel instruction scheduler previously used by default in

IBM systems. Since SWAP operations are the fundamental

method of communication in these systems, this large im-

provement impacts all programs that rely on communication

[27, 43, 44, 55, 56, 58ś60], especially as systems scale up. Our

scheduler also improves the loss in cross entropy for QAOA

circuits by up to 3.6x compared to the IBM scheduler. In

addition, using executions on crosstalk-free regions of the

hardware, we empirically verify that the mitigation provided

by our approach is near-optimal in practice.

Finally, this work makes the case for software mitigation

of crosstalk. This is timely as the trend in quantum computer

architecture is moving towards combating crosstalk solely in

hardware, either by building more sparsely-connected qubits

(such as IBM systems [8]) and/or by disabling simultaneous

nearby gates entirely at the hardware level (such as in Rigetti

and Google’s Bristlecone system [5, 6]). Both approaches

impose a performance burden when mapping applications

to the hardware. Instead, we argue that compilers can better

navigate the design tradeoffs.

2 QC Background

2.1 Principles of Quantum Computing

A qubit is the fundamental building block of a QC system.

Qubits have two basis states |0⟩ and |1⟩. Unlike classical bits,
qubits can also be in superposition, where the state is α |0⟩ +
β |1⟩, for α , β ∈ C, |α |2 + |β |2 = 1. When all n qubits in a QC

system are in the maximal superposition state (|α |2 = |β |2 =
0.5), the system represents 2n basis states simultaneously,

unlike classical systems (non-quantum) which can be in

exactly one of the 2n states at any given time.

Instructions or operations in a QC system are termed gates.

Gates manipulate information by modifying the complex am-

plitudes associated with the qubit basis states. The hardware

to implement QC gates is designed to apply some dynamic

physical interaction to the qubit using a time-dependent set

of control signals. For example, in IBMQ systems, gates are

implemented by driving the qubits with microwave volt-

age pulses [40]. Two-qubit Controlled NOT gates are imple-

mented using the cross-resonance effect [11, 51] where a

pulse is applied on control qubit at the resonant frequency

of a target qubit. This gate produces entanglement among

qubits, which results in non-classical correlated behaviour.

In a QC application, an algorithm ismapped to gates which

execute on a set of appropriately initialized qubits. During

execution, qubit states are manipulated and the state space

is evolved towards the desired output. At the end of the

algorithm, a classical output bitstring can be generated using

readout operations which collapse each qubit state’s to |0⟩
or |1⟩.

2.2 Operational Noise in NISQ Systems

QC systems have spatial and temporal noise variations aris-

ing frommanufacturing imperfections, imperfections of gate

implementation and control, and external interference [30,

44]. These systems are calibrated frequently to reduce op-

eration noise; during calibrations, error rates are measured

using randomized benchmarking [34] and reported for each

gate [23].

For the systems used in our study, the error rates for single

qubit operations are less than 0.1%. Error rates for two-qubit

CNOT gates range from 0.5-6.5%, average 1.8%. Readout

error on a single qubit is 4.8% on average. These error rates

indicate the reliability of the operation when it is performed

in isolation. QC executions consist of sequences of gates

followed by readout, and the errors compound.

While such standalone gate error rates are measured daily,

error rates for the simultaneous execution of multiple of

these gates have been time-consuming to characterize and

therefore are not measured daily. This paper demonstrates

that such simultaneous error characterizations are useful,

since they can be exploited in the compiler to mitigate the

impact of crosstalk.

3 Related Work and Novelty

A vast body of prior work exists on quantum circuit opti-

mization to reduce the total number of gates or number of

layers in the dependency graph (depth). Refs. [2, 15, 37, 45]

optimize abstract program IR, without considering hardware

constraints, while [9, 38, 41, 55, 59, 61] develop optimiza-

tions for mapping programs to hardware qubits to reduce

the circuit size or depth. Refs. [19, 36] use commutation

rules to minimize program duration. Ref [6] considers the

case where gates in proximity are disabled from operating

simultaneously due to crosstalk, but takes that as disabled

in hardware.

Almost all prior work takes it for granted that lower pro-

gram duration (a.k.a quantum circuit depth) is better, and do

not consider crosstalk effects. This is intuitive, since qubits

lose their information at an exponential rate as time passes.

Session 11B: Quantum computing — Who says

you can't watch two talks at once?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1003

However, in this work, we show that program duration can

be traded off to avoid crosstalk, and thus improve the overall

reliability of application executions.

Recently, [43, 44, 47, 58] used hardware characterization

data to improve the quality of compilation. They improve

the quality of mapping and SWAP insertion using indepen-

dent gate error rate data measured and published by QC

vendors, which does not include crosstalk characterization.

Consequently, neither these works nor industrial compilers

such as IBM Qiskit [1], Rigetti Quilc [57] or Google Cirq [18]

consider crosstalk effects.

On the hardware side, sparse qubit connectivity [8], fre-

quency allocation techniques [7] and gate implementation

approaches [53] have been used to reduce crosstalk. These

approaches are complementary to our work and are imple-

mented in the hardware used for our evaluation. Hardware

scheduling techniques have also been developed. In IBM

systems, the default hardware scheduler allows maximum

parallelism and aligns all gates to the right to execute them

late as possible. Figure 1c shows an example. While this op-

timization reduces decoherence errors, it does not reduce

crosstalk. In Rigetti and Google Bristlecone systems, the

hardware scheduler disables simultaneous nearby gates en-

tirely to avoid crosstalk [5, 6], irrespective of other hardware

or application characteristics. This approach incurs high de-

coherence error because of excessive serialization. Our work

proposes the first software technique for crosstalk mitiga-

tion and develops an instruction scheduler that serializes

instructions to avoid crosstalk, but also balances the need to

mitigate decoherence errors.

To the best of our knowledge, this work is the first to

evaluate schedule qualities on real quantum systems (with

real-world noise characteristics), and the first to improve

schedule qualities by considering spatial as well as temporal

aspects of the schedule Ð that is, which operations should be

scheduled when and in proximity to which other operations.

Our work is also the first to quantitatively show the extent to

which crosstalk effects influence the reliability of programs.

4 Crosstalk Mitigation in Software: Design
Questions

4.1 Background on Crosstalk Sources in

Superconducting Systems

In superconducting systems, crosstalk can occur for several

reasons. One type of crosstalk is due to the hardware neces-

sary to couple pairs of qubits for two-qubit operations. There

is a tradeoff between the strength of these couplings and the

known, but unwanted, crosstalk they generate. In IBM de-

vices, each qubit is connected to a few other nearest-neighbor

qubits through fixed-frequency microwave resonators result-

ing in an always-on coupling. In Figure 3, each CNOT gate

(edges) corresponds to one resonator. Because of the always-

on nature of the coupling, when a control pulse is driven on

one of the qubits, the resonator can propagate an unwanted

drive to neighboring qubits and corrupt their state. This ef-

fect is particularly acute for nearby qubits that have similar

resonant frequencies. If multiple nearest neighbor or next

nearest neighbor qubits have overlapping resonant frequen-

cies, driving a qubit can lead to unwanted state changes on

other qubits. Despite meticulous efforts to mitigate crosstalk

in QC hardware [8, 53], crosstalk noise is present in real

devices [20, 52].

4.2 Characterizing Crosstalk Noise Through

Randomized Benchmarking

To mitigate crosstalk noise in software, we must first char-

acterize the hardware. For example, in Figure 1, to quantify

the impact of crosstalk for the gates д1 and д2 executing

in parallel, we have to measure the crosstalk noise for the

corresponding hardware gates CNOT 0,1 and CNOT 2,3. To

accomplish this, the error rate of CNOT 0,1 and CNOT 2,3

can be measured independently, without invoking any other

gate. Then, the error rate of CNOT 0,1 and CNOT 2,3 can

be measured simultaneously, by invoking them in parallel.

If the simultaneous error rates are much higher than the

independent error rates, crosstalk exists between the two

gates.

Such measurements can be performed using Randomized

Benchmarking (RB), a standard procedure for measuring

gate error rates, which is used in IBM systems [29, 33, 34].

To measure the error rate, a single invocation of a gate is

not enough. For CNOT error measurement, RB uses multiple

random circuits, each having multiple invocations of the

CNOT composed along with random single qubit operations.

By executing these circuits on the hardware and fitting the

results to a theoretical model, the error rate is estimated. For a

gate дi , we denote the error rate measured without invoking

any other gate in the system as the independent error rate

E(дi) and the error rate of дi measured simultaneously with

дj as a conditional error rate E(дi |дj). Simultaneous RB (SRB)

on a pair of gates дi and дj yields both E(дi |дj) and E(дj |дi).
When a gate дi has crosstalk interference with дj , we expect

E(дi |дj) to be higher than E(дi).
While independent error rates are available from daily

calibration data, conditional errors are not. To measure con-

ditional error rates for a device, we have to perform SRB

experiments between every pair of CNOT gates that can be

driven in parallel i.e., CNOT pairs such as CNOT 0,1 and

CNOT 2,3 that do not share a qubit. For IBMQ Poughkeepsie

this approach requires 221 pairs of SRB experiments. Each

such SRB experiment requires multiple runs with different

random gate lengths (to get the final curve fit to the the-

oretical model) and each data point on the curve requires

multiple trials because of noisy operations. With 100 ran-

dom sequences per SRB, and 1024 trials per sequence, this

baseline method requires 22.6M executions and over 8 hours

of computation at current execution rates. Since QC systems

Session 11B: Quantum computing — Who says

you can't watch two talks at once?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1004

have highly variable noise properties [44], daily crosstalk

measurement (similar to daily gate error measurement which

is already performed by IBM) will consume over a third of a

device’s total lifetime.

Therefore, we ask: How can we perform crosstalk character-

ization experiments efficiently across the full device? Can we

exploit the physical properties of the device to reduce the num-

ber of experiments? What crosstalk measurements are useful

for mitigation in software?

4.3 Mitigating Crosstalk by Instruction Scheduling

To avoid crosstalk, a compiler can choose to serialize the

interfering operations. However, serialization can lead to

decoherence errors. On IBM systems, coherence times on

individual qubits range from 10-100 microseconds [44] Ð

when a program executes for 50 microseconds on the best

qubit with 100us coherence, it is 60% likely that the state is

corrupted. To mitigate this dramatic loss in reliability from

decoherence, the compiler should parallelize instructions as

much as possible.

We ask: How can a compiler optimize the two conflicting ob-

jectives of serializing instructions to avoid high crosstalk and

parallelizing instructions to avoid decoherence? How much

does crosstalk-adaptivity matter for parallel operations on su-

perconducting devices?

5 Reducing the Crosstalk Characterization
Overhead

We first present detailed characterization results on three

IBM systems. Using insights from our characterization, we

propose optimizations to reduce the characterization over-

head.

5.1 Characterization Results on IBMQ Systems

Figure 3 illustrates the crosstalk measurements for the three

systems. Across the gate pairs, crosstalk noise increases the

gate error rates up to 11x. For IBMQ Poughkeepsie, high

crosstalk errors occur only in 5 gate pairs, a small fraction

of the overall number of gate pairs (221). In each interfering

pair, the two gates are separated by 1 hop i.e, the shortest

path from one gate to the other is of length 1, which is the

expected behavior from device design.

Figure 4 shows daily variations of the error rates for IBMQ

Poughkeepsie. Conditional error rates for a gate vary up to

2x for IBMQ Poughkeepsie, and up to 3x on the other two

systems (not shown). Even though the absolute error rates

vary, the set of high crosstalk gate pairs tends to remain the

same across days.

5.2 Our Optimizations

To mitigate crosstalk through instruction scheduling, we

require accurate characterization data. Since crosstalk noise

has spatio-temporal variations, it should be characterized

daily to supply correct inputs to the compiler, similar to

how gate errors and coherence times are measured daily on

IBM systems. Towards this, we wish to reduce the number

of experiments required to measure conditional gate error

rates.

In the previous section, we measured conditional error

rates for every pair of CNOT gates that can be driven in

parallel. For IBMQ Poughkeepsie this approach requires 221

pairs of SRB experiments and over 8 hours of real-system

compute time on the QC device. All these experiments are

performed on the hardware, not in simulation. At face value,

and without knowledge of the spatio-temporal behavior of

crosstalk, this means that to enable compiler-level mitigation

of crosstalk we must run this expensive characterization step

daily. However, through a series of optimizations, we can

reduce the characterization overhead.

Optimization 1: Characterize only 1-hop pairs. It is suf-

ficient to perform SRB experiments on gate pairs which are

separated by 1 hop since on our devices, crosstalk noise from

a gate is significant only at 1 hop distance (see Figure 3). This

is the expected behavior from device design, since qubits

are dispersively coupled, i.e., the ratio of coupling strength

to detuning is much less than one. For each additional hop

the effective coupling is suppressed by this dispersive factor.

However, device packaging imperfections have been seen

to introduce longer range crosstalk effects in some older

systems [20, 46, 50].

Optimization 2: Parallelize SRB experiments of multi-

ple gate pairs. Next, given the above observation about

lack of long-range crosstalk, we can efficiently parallelize

crosstalk measurements across several gate pairs. When two

pairs are separated by two or more hops, their SRB measure-

ments can be performed in parallel. For example, in IBMQ

Poughkeepsie, we can perform crosstalk measurement for

the pairs (CNOT 0,1 | CNOT 2,3), (CNOT 6,7 | CNOT 8,9) and

(CNOT 16,17 | CNOT 18,19) in the same experiment since

each pair is at least 2 hops away from any other pair.

To efficiently parallelize SRB experiments, we can model

the problem as an instance of bin packing. Given a set of

n gate pairs on which SRB measurements are required, we

use a randomized first fit heuristic to pack the pairs into

a small number of experiments. The heuristic iteratively

builds a set of bins, with each bin corresponding to an exper-

iment. Initially, there is only one empty bin. The heuristic

iterates through the gate pairs and places each pair in the

first compatible bin. A pair (дi ,дj) is compatible with a bin

if all pairs (дk ,дl) in the bin are at least k hops away. For

example in IBMQ Poughkeepsie, with k=2, the pair (CNOT

16,17 | CNOT 18,19) is compatible with a bin which contains

the pair (CNOT 6,7 | CNOT 8,9); it is not compatible with

a bin which contains the pair (CNOT 11,12 | CNOT 13,14).

When no existing bin is compatible, a new bin is created. All

gate pairs are partitioned into a set of bins in this manner.

Session 11B: Quantum computing — Who says

you can't watch two talks at once?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1005

Algorithm Objective Method

SerialSched Mitigate crosstalk
Schedule all instructions

serially

ParSched Mitigate decoherence

Schedule maximum

instructions in parallel.

Current state-of-the-art,

used in Qiskit [1],

Quilc [57] and TriQ [44]

XtalkSched
Mitigate crosstalk

and decoherence

SMT optimization with

crosstalk characterization

data. ω : crosstalk weight

factor. (Section 6, 7)

Table 1. List of schedulers used in our evaluation.

When the gate overlaps with other operations, the error rate

is based on conditional error rates with the overlapping op-

erations. For each gate, we determine the set of overlapping

operations based on the IR dependencies. The subsets of this

set are the various gate overlap scenarios and are used to set

the appropriate conditional error rates for a gate.

To model the effect of decoherence, we associate a lifetime

variable with every qubit. The lifetime is the time elapsed

between the first operation and the last operation on the

qubit. We associate a decoherence error rate variable with

a qubit which is computed as an exponential penalty on

the lifetime, normalized by the coherence time of the qubit.

Thus, when the lifetime increases, the decoherence error rate

increases.

The objective function captures the tradeoff between in-

struction serialization for crosstalk mitigation and paral-

lelization for decoherence mitigation. We minimize the prod-

uct of gate error rates (which are influenced by crosstalk)

and the qubit error rates (which are based on decoherence).

When the optimizer serializes two gates which have high

crosstalk, the gate error rate terms reduce and the decoher-

ence terms increase. Similarly, when the gates are executed

in parallel, the gate error terms increase and the decoherence

terms reduce. Minimizing the objective over the entire pro-

gram allows us to find the optimal schedule which mitigates

crosstalk while also balancing the errors from decoherence.

Finally, to implement the schedule and enforce gate or-

derings, we use a post-processing step to insert control in-

structions in the form of barriers. We call our scheduler

XtalkSched. We compare its performance to two baselines

SerialSched and ParSched. These variants are discussed in

Table 1.

7 Instruction Scheduling: Optimization
Details

7.1 Variables

Let Q be the set of qubits and G be the set of gates in the

IR. For each gate д ∈ G, the start time is denoted by (д.τ),

duration by (д.δ), and error rate by (д.ϵ). To denote data

dependencies between two operations, we use a binary rela-

tion > on the gates. For two operations дj > дi if дj depends

on дi . In addition to these variables, for each qubit q in the

program, we create a coherence error rate variable q.ϵ .

7.2 Constraints

Data dependency constraints: If two gates дi and дj op-

erate on the same qubit, and дj uses the output of дi , дj
should start only after дi finishes. Such dependencies can be

enforced by the following constraint.

∀дi ,дj ∈ G : дj > дi ⇒ дj .τ ≥ дi .τ + дi .δ (1)

For example, for Figure 1b, the constraint д1 > д0.τ + д0.δ

expresses the data dependency between д0 and д1.

Gate duration information is available to the compiler

either from machine documentation or from calibration data

and is used to set the duration variables δ .

Gate error constraints: These constraints set crosstalk de-

pendent error rates for each two-qubit gate. We don’t con-

sider conditional error rates based on single qubit gates

because their error rates are 10x better than CNOT error

rates on current systems [44]. For each gate дi denote by

CanOlp(дi), the set of all operations that can overlap with it.

This set can be computed by finding eachдj that is neither an

ancestor nor a descendent of дi in the program dependency

graph specified by the IR. In Figure 1b,CanOlp(д2) = {д1,д3}.
д0 is not considered because it is a single-qubit gate. We

prune this set further to only include gates which have high

conditional error rates, which in our systems are at 1 hop

distance from дi .

For each gate дj ∈ CanOlp(дi), we create an overlap in-

dicator oi j , which tracks whether дi and дj overlap in the

schedule. oi j is set using the following constraint.

oi j = (дj .τ ≤ дi .τ + дi .δ ∧ дi .τ ≤ дj .τ + дj .δ) (2)

How can we set the gate error rates using the overlap

indicators? Consider д2 in Figure 1b. Since д2 can overlap

with д1 and д3, there are 4 possible scenarios: both д1 and

д3 don’t overlap with д2, only д1 overlaps with д2, only д3
overlaps with д2, and both д1 and д3 overlap with д2. For

each case, we set error rates using the following constraints.

¬o12 ∧ ¬o13 ⇒ д2.ϵ = E(д2) (3)

o12 ∧ ¬o13 ⇒ д2.ϵ = E(д2 |д1) (4)

¬o12 ∧ o13 ⇒ д2.ϵ = E(д2 |д3) (5)

o12 ∧ o13 ⇒ д2.ϵ =max{E(д2 |д1),E(д2 |д3)} (6)

In constraint 3, the error rate is the independent error rate

of д2, since it doesn’t overlap with the other two gates. In

constraint 4, the error rate is the conditional rate of д2 with

д1. In constraint 6, when both gates overlap withд2, crosstalk

may arise from both gates. But, in order to conservatively

serialize gates, we only consider crosstalk from the worst

Session 11B: Quantum computing — Who says

you can't watch two talks at once?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1007

gate, and take the maximum error rate over the two overlap-

ping gates. (We have not observed significant worsening of

errors from simultaneous execution of triplets of gates).

We generalize these constraints as follows. To set the error

rate for дi , we enumerate all possible overlap scenarios by

considering the powerset1 ofCanOlp(дi). For each nonempty

subset Olpk in the powerset, we denote the complement by

NotOlpk i.e., NotOlpk = CanOlp(дi) \Olpk and we add the

following constraint.
∧

дj ∈Olpk

oi j

∧

дj ∈NotOlpk

¬oi j ⇒ дi .ϵ = max
дj ∈Olpk

E(дi |дj) (7)

In other words, when the gates in the set Olpk overlap with

дi , and the gates in the setNotOlpk don’t overlap withдi , the

constraint sets the error rate to be the maximum conditional

error rate over the overlapping gates.

For the empty subset in the powerset, we add the following

constraint to account for the case when none of the gates

overlap with дi .
∧

дj ∈CanOlp(дi)
¬oi j ⇒ дi .ϵ = E(дi) (8)

Although there are 2 |CanOlp(дi) | constraints for each gate,

in practice the size of the set will not be large because it

includes only overlapping gates with high conditional error

rates. As Figure 3 shows, this is small for our systems.

Decoherence error constraints: These constraints track

the decoherence errors on each qubit in the program. They

use coherence time measurements available from daily ma-

chine calibration.

Exponential state decay in qubits can occur in two ways:

T1 time for the state |1⟩ to decay to |0⟩ and T2 time for a

superposition state (|0⟩ + |1⟩)/
√
2 to decay to either |0⟩ or

|1⟩. These are relaxation and dephasing respectively. We use

the term decoherence to refer to both these effects. T1 and

T2 values are reported for each hardware qubit during daily

calibration. If a program performs computation for time t on

a qubit, the probability of error fromT1 losses is proportional

to 1 − e−t/T1 , and the probability of error from T2 losses is

proportional to 1 − e−t/T2 . When t increases, the error rate

increases exponentially.

We set the decoherence error rate for a qubit qi ∈ Q by

computing the lifetime of the qubit in the schedule. The life-

time qi .t is the difference between the finish time of qi ’s last

gate L(qi) and the start time of qi ’s first gate F (qi). Current
QC systems are typically limited by T1 errors, but on some

qubits, T2 times can be much lower than T1 because of noise

fluctuations. To consider such cases, we set the maximum

available compute time qi .T as the minimum of T1 and T2
values of the qubit. We set the decoherence error on a qubit

1The powerset of a set S is the set of all subsets of S, including the empty

set and S itself. The cardinality of the powerset is 2|S | .

as follows.

qi .t = L(qi).τ + L(qi).δ − F (qi).τ (9)

q.ϵ = 1 − eqi .t/qi .T (10)

Although this constraint performs exponentiation over an

optimization variable, in the next section we show that it

can be expressed as a linear term.

IBMQ-specific constraints: Using Qiskit at the circuit

level, we can enforce control dependencies only using bar-

rier instructions. Therefore, any schedule where two gates

partially overlap cannot be enforced using the circuit-level

ISA [13]2. For each gate дi , and for дj ∈ CanOlp(дi) we en-
force that the two gates can either be scheduled without any

overlap or such that one of them happens fully within the

duration of the other.

(дi .τ + дi .δ < дj .τ) ∨ (дj .τ + дj .δ < дj .τ)∨ (11)

((дi .τ + дi .δ < дj .τ + дj .δ) ∧ (дi .τ > дj .τ))∨ (12)

((дj .τ + дj .δ < дi .τ + дi .δ) ∧ (дj .τ > дi .τ)) (13)

In current IBMQ systems the hardware control forces

all readout operations to occur simulateneously at the end.

Therefore, all gates are right-justified and scheduled from the

end. This affects the qubit lifetime variables in our optimiza-

tion. We model this behavior with a constraint that equates

the start times of all readout operations in the program.

7.3 Objective Function

Ideally, to minimize both gate errors from crosstalk and de-

coherence errors we can set the objective as,

min
(∏

∀д∈G
(д.ϵ)

︸ ︷︷ ︸

Gate errors (crosstalk)

∏

∀q∈Q
(q.ϵ)

︸ ︷︷ ︸

Decoherence error

)

. (14)

The first term minimizes the product of the gate errors and

the second term minimizes the product of decoherence er-

rors. Since the SMT solver requires linear operations, we

can minimize the logarithm of the objective to get a linear

function.

min
(∑

∀д∈G
(logд.ϵ) +

∑

∀q∈Q
(logq.ϵ)

)

(15)

By substituting the definition for q.ϵ from constraint 10, we

can re-write the objective as follows.

min
(∑

∀д∈G
(logд.ϵ) −

∑

∀q∈Q
(q.t/q.T)

)

(16)

In this form the objective function clearly shows the crosstalk-

coherence tradeoff.When gates are serialized to reduce crosstalk

errors, the first term reduces and the second term increases,

and vice versa when gates are parallelized.

2Recent versions of Qiskit and IBMQ systems provide a pulse-level abstrac-

tion for more fine-grained control of systems [39]

Session 11B: Quantum computing — Who says

you can't watch two talks at once?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1008

Finally, to test the relative importance of crosstalk and

decoherence errors, we consider a weighted objective where

a crosstalk weight factor ω ∈ [0, 1] is applied to the gate

error rate terms.

min
(

ω
∑

∀д∈G
(logд.ϵ) − (1 − ω)

∑

∀q∈Q
(q.t/q.T)

)

(17)

To compute the optimal schedule for a program, we first

use Qiskit’s passes to generate the program IR and map it to

the hardware. The mapped program IR is used to create the

optimization problem using this objective along with data

dependency, gate error and decoherence error constraints.

These constraints make the д.ϵ and qubit lifetime q.t vari-

ables dependent on the gate schedule. The gate schedule

produced by the optimization is post-processed to generate

executable code with the barriers necessary to enforce the

optimal gate orderings. We call this algorithm XtalkSched.

8 Experimental Setup

8.1 Crosstalk Characterization Implementation

We implemented the crosstalk characterization methods us-

ing IBMQiskit Ignis version 0.2.0 [24], an open-source frame-

work for error characterization. For CNOT error characteri-

zation, RB applies random sequences ofm two-qubit Clifford

gates which are constructed from single qubit gates and mul-

tiple invocations of the CNOT. The final gate is the inverse

of the previous gates so that the sequence should return to

the original state. By measuring the final state as a function

ofm and fitting to a theoretical model, one can extract the

error rate per Clifford. To extract the CNOT error rate, the

Clifford error rate is divided by the by the number of CNOTs

per Clifford (optimally 1.5). This assumes the single qubit

gate error is negligible and gives an upper bound on CNOT

error. To measure a CNOT gate’s error rate independently,

we apply standard two-qubit RB [24]. To measure the error

rates for two CNOTs simultaneously, we apply simultane-

ous two-qubit RB (SRB) [16]. In each SRB experiment, we

used 100 random sequences, with up to 40 Clifford gates per

sequence and performed 1024 trials per sequence.

8.2 Instruction Scheduler Implementation and

Baselines

We implement our instruction scheduler XtalkSched as a

compilation passes in IBM Qiskit Terra version 0.8.2 [21],

an open-source compiler framework. The SMT optimization

for XtalkSched uses the Z3 SMT solver [14] version 4.8.4,

using the Z3py APIs. We test our scheduler in comparison to

two baselines SerialSched and ParSched, shown in Table 1.

SerialSched serializes all operations in the program. ParSched

is the current state-of-the-art scheduler used in IBM Qiskit.

8.3 Benchmarks

SWAPCircuits:Wedemonstrate the importance of crosstalk-

adaptivity for communication orchestration in supercon-

ducting QC systems which have nearest-neighbor connec-

tivity. In these architectures CNOTs are permitted only be-

tween adjacent qubits. To enable a CNOT between two far

away qubits, compilers insert a sequence of SWAP opera-

tions which move the qubits into adjacent locations through

exchanges. For example, in IBMQ Poughkeepsie, CNOT 0,13

can be implemented as SWAP 0,5; SWAP 5,10; SWAP 13,12;

SWAP 12,11; CNOT 10,11;, where both qubits meet-in-the-

middle. Each SWAP operation is in turn composed of three

CNOT gates3. Figure 6b shows the operations executed for

this sequence.

We create meet-in-the-middle SWAP sequences between

pairs of qubits in the device and schedule it using the three

algorithms. When SWAP paths are executed on qubits which

have no crosstalk e.g., on the path 0, 1, 2, 3 on IBMQ Pough-

keepsie (see Figure 3), XtalkSched and ParSched produce the

same schedule. We avoid such SWAP paths in our evalua-

tion and focus on 46 circuits across the three devices which

include at least one pair of high crosstalk CNOTs.

QAOACircuits:We ran experiments onQAOA, a promising

NISQ application, using the hardware efficient ansatz [42].

We used circuits with 4 qubits and 43 gates (9 two-qubit

gates). We performed experiments on four crosstalk-prone

regions in IBMQ Poughkeepsie.

Other benchmarks: We also study our algorithm on the

Hidden Shift benchmark [10] used in prior work [43, 44].

We use Hidden Shift instances for sensitivity studies. Similar

to SWAP circuits, we create instances of these circuits on

subsets of qubits which are affected by crosstalk. To test

scaling, we use instances of quantum supremacy circuits

[35].

8.4 Metrics

Crosstalk characterization: We count the number of SRB

experiments and time required to perform characterization.

We compare these metrics for a policy which performs SRB

experiment all pairs of gates in the device, and with the three

optimizations proposed in Section 5.

Instruction scheduling: For SWAP circuits, we setup the

circuit such that it creates a known answer, that can be

measured (a Bell state) which can be measured using state

tomography [24]. State tomography provides an error rate

in the range [0, 1], with 1 meaning that the state is created

perfectly. To execute state tomography we use 9216 trials

(1024 per basis pair * 9 basis pairs) on the real system to

obtain the error rate.

For QAOA circuits, the output is obtained using 8192 trials.

Since the output is a distribution of states, we used cross-

entropy to measure the similarity of the output to the ideal

3SWAP 0,1 := CNOT 0,1; CNOT 1,0; CNOT 0,1

Session 11B: Quantum computing — Who says

you can't watch two talks at once?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1009

theoretical distribution. For Hidden Shift, we perform 8192

trials. The expected output is a single bit string, therefore,

the error rate is measured as fraction of trials which did not

yield the correct bit string.

In all cases, readout error mitigation [25] is used to reduce

the effect of imperfect hardware readout operations.

8.5 Setup

Our compilation experiments use an Intel Core i7 processor

(2.6GHz, 32GB RAM) with Python 3.7. We use three 20-qubit

IBM systems for the quantum experiments. The device inter-

face APIs in IBM Qiskit [1] were used to run characterization

and application circuits. The daily machine calibration data

is available through these APIs. The calibration data includes

gate durations and independent error rates for all gates and

coherence time (T1 and T2) for all qubits.

9 Optimizing Application Error Rate

9.1 Comparisons to Baselines using SWAP Circuits

Improvement in Error Rate: Figure 5 compares the error

rate for SWAP circuits scheduled with XtalkSched ω = 0.5,

versus the SerialSched and ParSched schedulers, on the three

systems. Although SerialSched naively serializes all instruc-

tions, in some cases it offers lower error than ParSched, be-

cause it avoids high crosstalk. ParSched outperforms Seri-

alSched because it avoids decoherence by parallelizing op-

erations. On all the tested qubit pairs, XtalkSched has sig-

nificantly lower error rate than SerialSched and ParSched

because it optimizes both crosstalk and decoherence. On

IBMQ Poughkeepsie, XtalkSched obtains up to 4.9x reduc-

tion in error compared to ParSched, and up to 9.2x reduction

compared to SerialSched. Across systems, the maximum im-

provement over ParSched is 5.6x, geomean 2x.

Impact on Program Duration:We compare the durations

of schedules produced by the three algorithms. Figure 5d

shows the program durations for SWAP circuits on IBMQ

Poughkeepsie. Across different qubit pairs, SerialSched has

the highest duration and ParSched has the lowest duration.

XtalkSched produces executableswhich are only 1.16x longer

than ParSched on average, worst case 1.7x. For NISQ appli-

cations, the most important figure of merit is the likelihood

of correct execution, and not execution time. Nevertheless,

XtalkSched needs to expend only a small increase in the

execution time to mitigate crosstalk.

Example Case: Figure 6 shows the schedules for the swap

path between qubit 0 and 13 on IBMQ Poughkeepsie. Seri-

alSched schedules all 4 SWAPs in series and avoids crosstalk

errors. But, it has high schedule length and therefore, high de-

coherence error. ParSched schedules the two pairs of logically

independent SWAPs in parallel which reduces the execution

time and decoherence errors. But, it incurs high crosstalk

errors for the SWAP operation on qubits 5, 10 and the SWAP

on 11, 12. XtalkSched obtains the best of both cases. It par-

allelizes the far away SWAPs which don’t have crosstalk,

and serializes the nearby SWAPs. This allows it to avoid the

crosstalk noise, which compensates for a small increase in

decoherence and improves the overall error rate.

For serializing the two SWAPs XtalkSched chooses the

best ordering of operations i.e., when two gates дi and дj
need to be serialized, it decides whether дi should be placed

before or after дj . For this system, qubit 10 has very low

coherence time (less than 6us, which is nearly 10X lower

than the average coherence on this system). On the IBM

systems, decoherence effects on a qubit start only after the

first gate is applied. If XtalkSched performs SWAP 5,10 first,

followed by SWAP 11,12, the state of qubit 10 would decohere.

Instead, since we model qubit lifetime to start at the first

gate (constraint 9), XtalkSched computes an optimal ordering

where SWAP 5,10 gets placed with minimum lifetime, after

SWAP 11,12.

Optimality: For qubits affected by crosstalk on IBMQPough-

keepsie, Figure 7 compares XtalkSched swap error rates to

the ideal crosstalk-free error rates. To obtain the ideal er-

ror rates, we averaged swap error rates on crosstalk-free

swap paths in IBMQ Poughkeepsie, selecting the lowest er-

ror schedule for each path. Figure 7 shows that XtalkSched

error rates are close to the ideal and within geomean 1%±16%
(1 standard deviation) of average error rate of crosstalk-free

swap paths of the same length.

Given fundamental connectivity restrictions on supercon-

ducting QC systems, SWAP-based communication is important

for all programs run on these systems, especially as devices

and programs scale up. XtalkSched’s near-optimal crosstalk

mitigation and improved error rate is therefore very relevant

for reliable execution on current and near-term NISQ systems.

9.2 Evaluation on QAOA Circuits

Figure 8 shows the cross entropy for QAOA circuits on IBMQ

Poughkeepsie using XtalkSched with ω ∈ [0, 1]. Cross en-
tropy measures how close the output distribution is to the

ideal distribution obtained from a noise-free simulation with

Qiskit Aer simulator. With ω = 1 XtalkSched considers only

crosstalk noise and ignores decoherence. Hence it serializes

all instructions similar to SerialSched. With ω = 0, only

decoherence is considered, and XtalkSched is equivalent to

ParSched. When ω is varied from 0.03 to 0.2, XtalkSched

outperforms both the baselines and significantly reduces the

cross entropy. XtalkSched reduces the loss in cross-entropy

(with respect to the ideal) by geomean 1.8x (up to 3.6x)

compared to ParSched and geomean 2x (up to 4.3x) com-

pared to SeriesSched. Further, we performed experiments

on crosstalk-free regions of the hardware to measure the

average cross entropy achievable on the device. Owing to

variability in gate errors across the device, this value has

mean 1.67 and standard deviation 0.15 and is indicated by

Session 11B: Quantum computing — Who says

you can't watch two talks at once?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1010

	Abstract
	1 Introduction
	2 QC Background
	2.1 Principles of Quantum Computing
	2.2 Operational Noise in NISQ Systems

	3 Related Work and Novelty
	4 Crosstalk Mitigation in Software: Design Questions
	4.1 Background on Crosstalk Sources in Superconducting Systems
	4.2 Characterizing Crosstalk Noise Through Randomized Benchmarking
	4.3 Mitigating Crosstalk by Instruction Scheduling

	5 Reducing the Crosstalk Characterization Overhead
	5.1 Characterization Results on IBMQ Systems
	5.2 Our Optimizations

	6 Crosstalk Mitigation Through Instruction Scheduling: Overview
	7 Instruction Scheduling: Optimization Details
	7.1 Variables
	7.2 Constraints
	7.3 Objective Function

	8 Experimental Setup
	8.1 Crosstalk Characterization Implementation
	8.2 Instruction Scheduler Implementation and Baselines
	8.3 Benchmarks
	8.4 Metrics
	8.5 Setup

	9 Optimizing Application Error Rate
	9.1 Comparisons to Baselines using SWAP Circuits
	9.2 Evaluation on QAOA Circuits
	9.3 Sensitivity of Weight Factor to Application Characteristics
	9.4 Scalability Study

	10 Fast Crosstalk Characterization
	11 Conclusions
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected result
	A.6 Notes

